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Abstract. This paper proposes using Bayesian classifiers for predicting in
space and time COVID-19 related targets such as infections, hospitalizations,
intubations and deaths. In order to achieve this, Bayesian classifiers were
developed and applied across a spatial grid, with each cell representing a
municipality in Mexico. These models utilized open access epidemiological data
between 2020 and 2021 published by the Mexican government’s epidemiology
agency and sociodemographic data from the 2020 national census of Mexico.
Specifically, COVID-19 related targets are derived from epidemiological data and
predictive features used in the model are extracted from socio-demographic and
socio-economic data. Continuous variables from both datasets were discretized
and represented as a finite set of presence-absence variables. These Bayesian
models assign a “correlation” measure, known as score, to each variable with
respect to the COVID-19 target. This implies that, we are able to identify profiles
of the municipalities that are conductive to having COVID-19 related targets.
The models generate two types of outcomes: (1) Spatiotemporal predictions of
the abundance of COVID-19 targets are made using the Bayesian framework.
(2) Predictions of number of individuals belonging to a given COVID-19
target for each municipality in a defined validation period. The utility of this
framework is demonstrated by its strong performance in predicting the Mexican
municipalities with the highest number of individuals in the top 10% of the target
classes. Additionally, it provides reasonably accurate forecasts for the number of
individuals within the target classes in each municipality.

Keywords: Epidemiology, SARS-Cov-2, COVID-19, Bayesian classifiers,
Naive Bayes, complex adaptative systems, multifactoriality.

1 Introduction

The most recent pandemic was provoked by the SARS-Cov-2 virus. Since the first
cases in December 2019 until November 2022, according to World Health Organization
(WHO) [20], this disease has infected more than 634.5 million people and caused 6.5
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millions deaths worldwide. The prevention and control of pandemics are of utmost
importance from both the public health and scientific perspectives. Furthermore, the
pandemic has demonstrated itself to be a Complex Adaptive System (CAS) as its
evolution is contingent upon multiple factors which have changed and adapted over
time as has the pathogen itself. One of the most important disciplines with which to
study the pandemic is epidemiology “The systematic study of the distribution, causes
and determinants (factors) of epidemiological states, risks or health-related events in
specific populations, as in a geographical area, and its application to public health
problems” [5].

The determinants play a crucial role in addressing the most relevant questions
to understand about health phenomenon: when?, where?, why?, who?, what?, how?,
etc. Therefore, epidemiology is a research discipline with an important public health
component and a quantitative discipline encompassing descriptive and predictive
perspectives. According to [14] “epidemiological intelligence is defined as the
systematic compilation, analysis and communication of information aimed at detecting,
verifying, evaluating and investigating events and risks for the public health, with the
purpose of issuing an early alert”.

In this context, it becomes crucial for decision makers to generate models about
various aspects of the pandemic, interpreting the outcomes of these models in the
real-world lead to lead to actionable insights. According to official Mexican government
data, the COVID-19 pandemic has resulted in over 7 million infected people and more
than 300 thousand deaths as of November 2022 in Mexico [6]. This pandemic has
become the most extensively documented pandemic in world history, primarily owing
advances in data collection, processing and storage capabilities achieved in recent years.

In Mexico, the Ministry of Health implemented a surveillance system for
infections, which publishes daily the records obtained from a national network of
hospitals. This database includes demographic data, comorbidities, clinical conditions
and spatiotemporal attributes. Moreover, there are public datasets, such as the 2020
national census of Mexico, that can be included into the models as potential risk
factors, processing them as presence-absence variables, as we will see later. In this
work, Bayesian classifier models are generated to predict the number of individuals
belonging to COVID-19 related targets, such as infected people and deaths.

The Bayesian models are computationally inexpensive, transparent, readily
interpretable and have shown a good performance in a wide variety of problems
[18, 19, 17], those are the main reasons to apply them. Unlike traditional SIRS-type
epidemiological models, Bayesian classifier models enable the incorporation of a
large number of variables, thereby capturing the high degree of multifactoriality of
the pandemic.

2 Other Models

2.1 Differential Equations Models

In the 20th century, compartmental models were proposed for analyzing epidemics,
consisting of an initial value problem, which involves ordinary differential equations
(ODE) and initial conditions.
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Although they are mathematically elemental, they help to develop the intuition for
utilizing more sophisticated models. These SI(R)(S) models divide the population into
groups, where the number of people in each group is time dependent: S (t) is the
number of susceptibles, I (t) is the number of infected and R (t) is the number of
recovered. The equations contain some known parameters, such as the mortality rate µ,
the contact rate λ and the recovery rate γ.

Some models have considered the number of births and deaths in the population
by adding the term µN to the change in the susceptible group and subtracting a
proportional amount from each group. In 1927, Kermack y McKendrick purposed
the SIR model aimed at modelling specific epidemics, wherein individuals become
immunized upon recovery:

dS

dt
= −λIS + µN − µS , (1)

dI

dt
= λIS − γI − µI , (2)

dR

dt
= γI − µR, (3)

where S (0) = S0 > 0, I (0) = I0 > 0, R (0) = R0 > 0 and S (t)+I (t)+R (t) = N .
However, there are certain diseases, such as COVID-19, in which individuals do not
develop total immunity upon recovery. For such cases, we have the SIS model:

dS

dt
= −λIS + γI + µN − µS, (4)

dI

dt
= λIS − γI − µI , (5)

where S (0) = S0 > 0, I (0) = I0 > 0 and S (t) + I (t) = N . These types of
models have been extensively studied, as seen in [13]. In the context of the COVID-19,
numerous works have modeled the outbreak in different places, as evidenced in [2, 3,
4]. Furthermore, new versions of these models have been developed, by incorporating
additional epidemiological states and transition rates between different groups [1].

Some other works identified certain deficiencies in the SI(R)(S) models, as seen in,
[10]; in which, the authors utilized the SIR model to predict COVID-19 cases and deaths
in Isfahan province of Iran, and discovered significant disparities between the long-term
forecasts and the real cases and deaths.

Another common criticism of SI(R)(S) models is that they do not consider the
multifactorial nature of a complex phenomenon such as an epidemic. For instance, these
models do not incorporate factors beyond the simplified susceptible, infected etc. states,
such as social, cultural, demographic, economic, ecological, geographical and others.

2.2 Machine Learning Models

Thanks to developments in computing and data storage capabilities in recent
decades, applications of machine learning have proliferated across a variety of fields
and disciplines.
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There have been studies that utilized machine learning models to predict COVID-19
targets. The class of deep learning models learn patterns using neural networks
with multiple neuron layers. A research group from Georgia Institute of Technology
developed a deep learning model called DeepCOVID [12], aimed at making predictions
about COVID-19 for each state in USA.

This deep learning framework utilized many data sources like COVID-19
epidemiological, COVID-19 tests, digital thermometer readings, mobility, social
distancing measurements and viral load measurements. DeepCOVID was one of the
first purely data driven and deep learning model and its results were very good in
the short-term and trend performance. Another machine learning approach, utilized to
interpret the COVID-19 cases and deaths over time as time series for a given place, is
the attention mechanism models as applied to time series, weighting specific elements
in the processing stage, as seen in [8].

In addition to the machine learning and SI(R)(S) models, some studies have
presented hybrid models, combining the dynamics of compartmental models with
machine learning techniques. For instance, in [3], interpretable encoders were utilized
to incorporate covariates. Also in [16], a variation of SI(R)(S) is trained using weighted
least squares. The main criticism for the deep learning and some of the hybrid models
is their computational expense, which presents a challenge in generating real-time
predictions, as running these models requires, special hardware as GPUs as well as
their “black box” nature.

3 Bayesian Classifier Models

The general approach in this work is to employ a Bayesian framework, where the main
objective is to estimate the conditional probability P (C|X) for a given target class C,
conditioned on a vector of attributes X = (X1, X2, . . . , Xm). The general Bayesian
approach possesses several advantages, as exemplified by Bayes’ theorem :

P (C|X) =
P (X|C)P (C)

P (X)
. (6)

That relates the conditional probability P (C|X), also known in this context as the
posterior probability, with the likelihood function P (X|C), the evidence function
P (X) and the prior probability P (C). P (C|X) is referred as the posterior probability
because it can be interpreted as a probability after the inclusion of the data associated
with X, providing a better estimation than the prior probability P (C). Naturally,
Bayes’ theorem incorporates the phenomenon of adaptation, as the posterior probability
can be re-calculated when new information X′ become available, according to:

P (C|X′,X) =
P (X′|X, C)P (C|X)

P (X′|X)
. (7)

Which determines how the previous posterior probability as a new prior is
updated. Another advantage of employing the Bayesian approach is that it provides
a natural framework for analyzing causality [11].
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3.1 Naive Bayes

Given the impossibility in directly approximating P (C|X) or P (X|C) in a frequentist
sense it is necessary to find a method for estimating them. One well-known, tested and
simple approximation is the called Naive Bayes method. It assumes that the variables
X = (X1, X2, . . . , Xm) are independent, thus:

P (X|C) =

m∏
i=1

P (Xi|C) , (8)

P
(
X|C

)
=

m∏
i=1

P
(
Xi|C

)
, (9)

where C the set complement of C i. Combining the equations (6) and (8) and the
following approximation for the evidence function:

P (X) =

m∏
i=1

P (Xi|C)P (C) +

m∏
i=1

P
(
Xi|C

)
P
(
C
)
. (10)

Then,

P (C|X) =

m∏
i=1

P (Xi|C)P (C)

m∏
i=1

P (Xi|C)P (C) +

m∏
i=1

P
(
Xi|C

)
P
(
C
) . (11)

At this point, the score function S (C,X) is introduced, which is a monotone
function of P (C|X) and can be interpreted as the odds ratio of C and its
complement C:

S (C,X) = ln

(
P (C|X)

P
(
C|X

)) = ln

(
P (C)

P
(
C
))+

m∑
i=1

ln

(
P (Xi|C)

P
(
Xi|C

)) = s0 +
m∑
i=1

si (X) . (12)

Defining s0 := ln
(
P (C)/P

(
C
))

and si (X) := ln
(
P (Xi|C)/P

(
Xi|C

))
for

1 ≤ i ≤ m. The function S (C,X) can be interpreted as a classifier, indicating that a
record with profile X belongs to the target class C if S (C,X) > 0 and it belongs to
the class C if S (C,X) < 0.

3.2 Generalized Naive Bayes

The Naive Bayes method is based on a strong assumption: the likelihood function can
be completely decomposed, as shown in (8). Despite this supposition the Naive Bayes
method has proven to be robust and surprisingly accurate, as demonstrated in [18].
However, this method can be generalized by employing an alternative factorization to
(8), for considering correlations among the variables X = (X1, X2, . . . , Xm). Let ξ be
a partition of X, that is, ξ = {ξ1, ..., ξk} where each ξj is a subset of X and they satisfy
that {X1, .., Xm} = ∪k

j=1ξj and ξi ∩ ξj ̸= ∅ for i ̸= j.
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Particularly, defining ξj = {Xj} for 1 ≤ j ≤ m, ξ = {ξ1, ..., ξm} represents the
Naive Bayes approximation. Given a partition ξ the likelihood function factorization
(8) can be generalized as:

P (X|C) =

k∏
i=1

P (ξi|C) , ξi ∈ ξ. (13)

Which, in general, differs from the Naive Bayes factorization. Analogous to (11)
utilizing (13) instead of (8):

P (C|X) =

k∏
i=1

P (ξi|C)P (C)

kξ∏
i=1

P (ξi|C)P (C) +

kη∏
i=1

P
(
ηi|C

)
P
(
C
) , (14)

where η =
{
η1, ..., ηkη

}
is a partition different from ξ. Finally the score functions is

generalized as:

S (C,X) = ln

(
P (C)

P
(
C
))+

kξ∑
i=1

ln (P (ξi|C))−
kη∑
i=1

ln
(
P
(
ηi|C

))
, (15)

= s0 +

kξ∑
i=1

SC (ξi)−
kη∑
i=1

SC (ηi) , (16)

where SC (ξi) := ln (P (ξi|C)) and SC (ηi) := ln
(
P
(
ηi|C

))
. Selecting η = ξ in (14):

S (C,X) = ln

(
P (C)

P
(
C
))+

k∑
i=1

ln

(
P (ξi|C)

P
(
ξi|C

)). (17)

This is a natural generalization of the Naive Bayes classifier.

4 Spatial Cells Ensemble

To calculate the score contributions we must have a statistical ensemble with which
counts of NC , NXi

and NCXi
can be made. We will consider two types of ensemble,

starting with an ensemble of spatial cells - in the present case municipalities. Let
R be a region in the two-dimensional plane, such as the surface delimited by
Mexico in the map.

Suppose that M = {ci}Ni=1 is a partition of R, that is, a set of subregions where
ci ∩ cj = ∅ for any i ̸= j and the union of these subregions is equal to R. M is defined
as a mesh and the elements ci are the cells. The set of municipalities in Mexico is a
mesh for the region delimited by Mexico.
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Then, a function Xj : M → {0, 1} is called a presence-absence variable, we will
say that Xj occurs in the cell ci, if it satisfies that Xj (ci) = 1. For a given mesh M
and a set of presence-absence variables X = {X1, ..., Xm}, a target class is a subset C
of M. In this context, the Naive Bayes approximation (12) can be rewritten as:

S (C,X) = ln

(
NC

N −NC

)
+

m∑
i=1

ln

(
NCXi/NC

(NXi
−NCXi

) / (N −NC)

)
. (18)

Because P (C) = NC/N , P (C) = (N −NC) /N , P (Xi|C) = NCXi
/NC and

P
(
Xi|C

)
= (NXi −NCXi) / (N −NC), where NC represents the number of cells

belonging to the target class C and NCXi indicates the number of cells where both C
and Xi co-occur. Clearly, if NC = 0 or NCXi

= 0 the score S (C,X) is undefined, to
avoid this possibility a standard Laplace term is applied [9]:

S (C,X) = ln

(
NC

N −NC

)
+

m∑
i=1

ln

(
(NCXi + α)/(NC + 2α)

(NXi −NCXi + α) / (N −NC + 2α)

)
. (19)

There are several target classes related with COVID-19 that can be predicted utilizing
the ensemble of cells. For example, the top 10% of cells with the highest number of
COVID-19 cases during a training period. The Naive Bayes model assigns the score sj
to the variable Xj , and by using the expression (19) it is possible to calculate the score
for each cell.

The score of each cell can be interpreted as a measure of correlation with the target
class, cells with higher scores are more likely to belong to the target class. In the
previous example, the cells with the higher scores during training period, are the more
likely for belonging to the top 10% with the highest number of cases of COVID-19 in
the subsequent period.

In order to capture the changes over time, three periods with the same length are
considered: (1) the first period t − 1, (2) the training period t and (3) the validation
period t + 1. For a given target class C, such as top 10% of cells with highest number
of deaths, two special types of target classes Ĉ are defined as:

– Improvement: Cells that belong to C during t− 1 and do not belong to C during t.

– Deterioration: Cells that do not belong to C during t− 1 and belong to C during t.

By utilizing the target class Ĉ and presence-absence variables during the training
period in the Naive Bayes method, it is possible to determine the improvement or
deterioration of the target class for the validation period by identifying the cells with
the highest scores.

5 Population Ensemble

In the population ensemble the fundamental element is not the cell, but the “person”. Let
Ni represents the population of the cell ci ∈ M. If M is the set of municipalities in
Mexico, the Ni is the population of the municipality ci. In this context, the target classes
are defined based on the individuals, such as infected or death by COVID-19.
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Table 1. Presence-absence variables derived from variable Female population.

Variable Bin Range

Female population 1 43.2%: 49.3%

Female population 2 49.3%: 50.0%

Female population 3 50.0%: 50.5%

Female population 4 50.5%: 50.9%

Female population 5 50.9%: 51.2%

Female population 6 51.2%: 51.5%

Female population 7 51.5%: 51.8%

Female population 8 51.8%: 52.2%

Female population 9 52.2%: 52.9%

Female population 10 52.9%: 60.0%

In this case, the population ensemble size coincides with the total population
N =

∑
Ni and the presence-absence variables are based on the combined populations

of the cells. The population ensemble enable us to predict the number of individuals in
the target class by assigning a score to each individual using the expression (19), where
NC represents the number of people belonging to the target class C and NCXi indicates
the number of people belonging to C and possessing the attribute Xi.

The higher the score of an individual, the more likely it is the individual belongs to
the target class. Although for reasons of privacy it is not possible to create models which
have socio-demographic and socio-economic variables documented for each individual
over the whole population of Mexico, there are documented and publicly available
variables defined over the set of municipalities of Mexico. In order to extend the use
of the cells-defined (municipalities-defined) variables Xj to the entire population, we
define the function X̂j such that X̂j = 1 for individuals that are part of the population
of any cell ci that satisfies Xj (ci) = 1.

For simplicity, the variables X̂j will be just denoted by Xi. Using variables defined
over the cells to make predictions, we assign the same score for a given variable to
every individual within the same cell, as each individual within a given cell inherits
the attributes of that cell. In order to determine the probability for each individual
population ensemble, the score calculated for individuals is considered. Ranking the
population based on their individual score and dividing into equally sized d sub-lists
Ik, the probability for each sub-list is calculated as follows:

pIk =
number of individuals belonging to the target class C within Ik

number of individuals within Ik
. (20)

Just like in the cells ensemble the score depends on the period. Let’s consider the
scores and probabilities for each cell during the first and training period as

(
St−1
i , pt−1

i

)
and (St

i , p
t
i), the probability for each individual in the cell ci computed in two ways:
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Table 2. Predictions for the municipalities with the highest scores resulting from the model
targeting deaths by COVID-19 in the population between 30 and 39. The first, training and
validation periods are November 2020, December 2020 and January 2021, respectively.

State Municipality Ni #Ct
i St

i pred. #Ct+1
i #Ct+1

i

Ciudad de México Gustavo A. Madero 171225 21 55.483 52.26 36

Ciudad de México Iztapalapa 281800 31 52.954 84.65 57

Ciudad de México Tlalpan 107280 13 51.268 40.54 14

Ciudad de México Iztacalco 61842 14 50.906 33.56 15

México Cuautitlán Izcalli 84377 8 50.848 39.24 17

– Additive prediction: Let f be a regression model for the data (St
i , p

t
i), then define

∆pti := f
(
St
i − St−1

i

)
. The probability for each cell ci in the validation period is

given by pt+1
i := pti +∆pti.

– Multiplicative prediction: pt+1
i :=

#Ct
i

#Ct−1
i

pti.

Here, #Ct
i represents the number of the individuals in the target class within the cell

ci during the period t. For both types of predictions #Ct+1
i = pt+1

i Ni.

6 Model Validation

6.1 Spatial Validation

Given a training period t and a cells ensemble, the ensemble is randomly divided into
two subsets: the training and the validation sets. The Bayesian model is trained using
the training set, computing a score sj for the presence-absence variables Xj during
the training period. The score for each cell in the validation set is calculated using the
variable scores sj .

It is possible that certain cells may not have any calculated score variables associated
with them, such cells are called nulls. The spatial validation aims to measure the
model’s ability to identify the validation cells in the target class. This purpose is
analyzed using the recall defined as, TP /(TP+FN) in each sub-list Ik, where TP
is the number of true positives in the sub-list Ik, FN is the number of false negatives
and the sub-lists are equally sized defined by ranking the validation cells by score.

6.2 Temporal Validation

Let t and t + 1 be training and validation periods, respectively. The objective of
the temporal validation in the cells ensemble is to measure the performance of the
predictions over time. Similar to the spatial validation, the recall is analyzed for each
sub-list Ik obtained by ranking the entire mesh by score and comparing it with the real
data in the validation period. In this type of validation, the TP are cells in the target class
during the validation period and belonging to Ik and the FN are the false negatives.
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Fig. 1. Scatter plot showing the predicted values Ct+1
i versus the observed values of Ct+1

i for the
predictions of the model in Table 2. The R2 value is 0.8611.

Fig. 2. Recall curve for the predictions of the model configuration in Table 2.

7 Data Processing

The data necessary to train the Bayesian models includes the target classes C for the
specified periods, presence-absence variables Xj and the mesh M over the region
R. This work focuses on Mexico as the region between the years 2020 and 2021 and
the set of municipalities in Mexico as the mesh.
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Fig. 3. Scatter plot of the prediction Ct+1
i versus the observed value of Ct+1

i for the predictions
in Table 3, with an R2 value of 0.9393.

Fig. 4. Recall curve for the predictions of the model configuration in Table 3.

The presence-absence variables are derived from the processed variables of the 2020
national census of Mexico, while the target classes pertain to the epidemiological
states of infection and death caused by COVID-19. The epidemiological states are
obtained from the open COVID-19 database of the epidemiology agency of the Mexican
government. This database is generated by the COVID-19 surveillance system, which
publishes daily records reported by the hospital network in the country.
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Table 3. Predictions for the municipalities with the highest scores resulting from the model
targeting infections by COVID-19 in the population aged 60 years and older. The first, training
and validation periods are November 2020, December 2020 and January 2021, respectively.

State Municipality Ni #Ct
i St

i pred. #Ct+1
i #Ct+1

i

Ciudad de México Álvaro Obregón 122319 2526 83.976 3630.63 2957

Ciudad de México Gustavo A. Madero 203469 2488 83.107 5365.26 3416

Ciudad de México Tlalpan 108894 1724 81.535 2557.30 2218

Ciudad de México Venustiano Carranza 78964 1135 79.815 1998.50 1153

Ciudad de México Coyoacán 126592 1416 79.397 3199.82 1615

In addition to capturing whether an individual is infected or not, it includes
demographic profiles, comorbidity data, other clinical conditions, and spatial-temporal
information at the daily and municipal level. For a given training period and target class,
the open COVID-19 database provides the municipality information for each record
that belongs to the target class. The open database where this data was obtained can
be found at [15]. The presence-absence variables are derived from the 2020 national
census database of the Mexican government [7].

The census database contains 180 variables with population and housing
characteristics for different geographical levels. In particular, this study utilizes data
at the municipal level. All census variables are integer-valued variables defined over the
mesh of municipalities, and they are processed to generate presence-absence variables.
First of all, as the variables are defined across the set of municipalities, and given
the substantial diversity among municipalities, the variable values were normalized by
dividing them by the population of each municipality.

Let X be a variable and d an integer value greater than 0. It is possible to obtain
d presence-absence variables from the variable X as follows. Since the variable X is
defined over M, the rank is finite. Therefore, by sorting the rank, it is possible to divide
it into d equally sized sub-ranks (rj−1, rj ]. Each sub-rank defines a presence-absence
variable Xj as follows: for every ci ∈ M, Xj (ci) = 1 if rj−1 < Xj (ci) ≤ rj .

This data processing transforms every variable into d presence-absence
variables. Thus, fixing d = 10, 1800 presence-absence variables can be derived from
census database. For example, the variable Female population is one of the 180 census
variables defined across the set of municipalities, its the minimum value is 40 and the
maximum is 953,783. For this specific variable, using the process described above, were
derived 10 presence-absence variables presented in the Table 1.

8 Results

Several models have been generated for different configurations. In the population
ensemble, the target classes considered were infection or death by COVID-19 for
different age groups: 60 years and older, 50-59 years, 40-49 years, 30-39 years, and
18-29 years. Furthermore, each model had consecutive first, training and validation
periods, each lasting 30 days. The target classes were defined based on two criteria: the
COVID-19-related target and the age group.
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For example, one target class included individuals aged 60 years and older who were
infected by COVID-19, while another class included people aged 18 to 29 years who
died from COVID-19. The variables utilized for the model training were derived from
the 2020 national census database, as mentioned in the previous section, and all models
had the same static presence-absence variables. The people ensemble models predicted
the number of people in the target class for each municipality during validation period.
Below, we present partial outcomes of two model configurations.

The first configuration, was considered people between 30 and 39 years old who
died by COVID-19 as target class, using December 2020 as training period, the Table
2 displays the predicted and actual numbers of people in the target class (pred. #Ct+1

i

and #Ct+1
i respectively) during the validation period for the municipalities in Mexico

with the highest scores calculated in the model. Similarly, Table 3 shows the predicted
and actual #Ct+1

i for the second example, where the target class consists of people
aged 60 years and older who were infected by COVID-19, also using December 2020
as the training period.

The Figures 1 and 3 depict scatter plots generated using the predicted #Ct+1
i

and the actual #Ct+1
i values for both model configurations. In both examples, the

coefficient of determination R2 is a high (near to 0.9), indicating that the 2020 census
presence-absence variables effectively explain the number of people in the target classes
using this methodology, and the predictions are reasonably accurate.

This framework assigns a score to each municipality as expressed by equation (19).
Figures 2 and 4 demonstrate that this score is effective in predicting the municipalities
that will belong to the top 10% with the highest number of individuals within the target
class during the validation period, referred to as Ct+1

10 for brevity. To achieve this, the
entire list of municipalities is divided into 10 equally-sized sub-lists: I10, I9, ..., I1,
where I10 represents the top 10% of municipalities with the highest scores, and I1
represents the bottom 10% with the lowest scores.

Figures 2 and 4 show that more than 50% of municipalities in Ct+1
10 are included in

I10. Those municipalities within Ct+1
10 and do not included in I10, distributed across the

remaining sub-lists Ik with k ̸= 10, the Figures 2 and 4 display the growth percentage
of municipalities in Ct+1

10 and Ik with respect to Ik+1. In particular, in the second model
configuration, as shown in Figure 4, it can be observed that 67% of the municipalities in
Ct+1

10 falls within I10 and all municipalities in Ct+1
10 are accounted for in I10, I9, ..., I4.

9 Conclusions and Discussion

While some of the developed models have incorporated variables from various domains
(demographic, hospital infrastructure, mobility, social contact measures, etc.), they
have been limited in quantity. Considering the complexity of the COVID-19 pandemic,
which depends on numerous factors, it is important to include as many variables from
relevant domains as possible to accurately model the reality.

Unlike the SI(R)(S) models, the Bayesian approach allows for the consideration
of variables other than just the time series of infected and deceased individuals in
making predictions.
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In general, the reviewed literature agrees that the generated predictions are intended
to support public health decision-makers in formulating more informed policies.
However, very few models provide a measure of the factors most correlated with the
target class of COVID-19 (infected, hospitalized, deceased, etc.), which would provide
more specific guidance on the necessary actions to be taken.

In contrast to certain models, such as neural networks, which demand specialized
hardware like Graphics Processing Units (GPUs) for real-time predictions due to
intensive calculations during training, our proposed approach does not necessitate
specific hardware and boasts reasonable training times.

The model has high practical utility for public health decision-makers, as indicated
by its high R2 value. This suggests that its predictions can provide valuable insights
into what can be expected for the upcoming period. Ranking municipalities based on
their scores offers a valuable means of identifying the municipalities that are likely to
belong to the top 10% with the highest population within the target class during the
validation period.
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